Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes
نویسندگان
چکیده
We report weaknesses in two algebraic constructions of low-density parity-check codes based on expander graphs. The Margulis construction gives a code with nearcodewords, which cause problems for the sum-product decoder; The RamanujanMargulis construction gives a code with low-weight codewords, which produce an error-floor.
منابع مشابه
When does one redundant parity-check equation matter?
We analyze the effect of redundant parity-check equations on the error-floor performance of low-density paritycheck (LDPC) codes used over the additive white Gaussian noise (AWGN) channel. Our findings show that a large number of iterative decoding errors in the [2640, 1320] Margulis code, confined to point trapping sets in the standard Tanner graph, can be corrected if only one redundant parit...
متن کاملLowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code
Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-errorratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to ...
متن کاملTwo Methods for Reducing the Error-Floor of LDPC Codes
We investigate two techniques for reducing the error-floor of low-density parity-check codes under iterative decoding. Both techniques are developed based on comprehensive analytical and simulation studies of combinatorial properties of trapping sets in codes on graphs. The first technique represents an algorithmic modification of beliefpropagation based on data fusion principles and specialize...
متن کاملA Survey on Trapping Sets and Stopping Sets
LDPC codes are used in many applications, however, their error correcting capabilities are limited by the presence of stopping sets and trappins sets. Trappins sets and stopping sets occur when specific low-wiehgt error patterns cause a decoder to fail. Trapping sets were first discovered with investigation of the error floor of the Margulis code. Possible solutions are constructions which avoi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 74 شماره
صفحات -
تاریخ انتشار 2002